ЦИЛИНДРЫ СЕРИИ СН

Hopмы ISO 6020/2 – 1991 – DIN 24554 серии 160 бар компактные

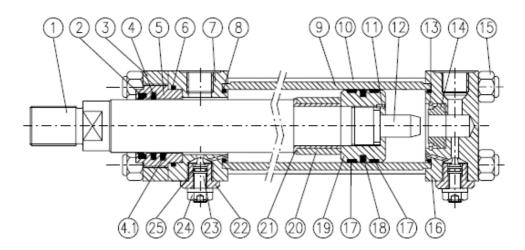
Рабочее давление: до 21 МПа Максимальное давление: 25 МПа Рабочая температура: от -20 до 80 °C

Допуски по ходу: от 0 до 1.2 мм для хода до 1000 мм, от 0 до 2.5 мм для большего хода

10 расточек от 25 до 200 мм до трех штоков для расточки

НА ЗАКАЗ:

Регулируемое торможение ограничителя хода на обоих концах цилиндра


Дренаж на штоке

Двойная уплотнительная прокладка штока

Специальные уплотнительные прокладки, подходящие для широкой гаммы жидкостей и температур

Бесконтактные индуктивные датчики для контроля ограничителя хода

Отдушины на обоих концах цилиндра

Поз.	Наименование	Материал	Поз.	Наименование	Материал
1	Шток	Хромированная сталь	13	Заднее стопорное кольцо	Сталь
2	Пылесъемное кольцо	Полиуретан	14	Втулка заднего тормоза	Бронза
3	Фланец	Сталь	15	Самотормозящаяся гайка	Сталь
4	Уплотнительная прокладка штока	Полиуретан / ПЭТФ	16	Задняя головка	Сталь
4,1	$2^{\frac{as}{2}}$ уплотнительная прокладка штока (опция L)	Нитрильный каучук и ПЭТФ	17	Башмак с антифрикционным покрытием	ПЭТФ
5	Втулка направляющей	Чугун	18	Уплотнительная прокладка поршня	Полиуретан / ПЭТФ
6	Кольцевая прокладка + РВК	Нитрильный каучук и полиуретан	19	Поршень	Сталь
7	Головка	Сталь	20	Втулка переднего тормоза	Сталь
8	Кольцевая прокладка + РВК	Нитрильный каучук и полиуретан	21	Распорка	Сталь
9	Гильза	Сталь	22	Предохранительная пробка	Сталь
10	Стяжка	Сталь	23	Регулировочная шпилька	Сталь
11	Предохранительная шпилька	Сталь	24	Уплотнительная гайка	Сталь
12	Тормозной шип	Сталь	25	Кольцевая прокладка	Нитрильный каучук

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ВЫБОР КОНСТРУКТИВНОЙ СЕРИИ

Для определения необходимой конструктивной серии следует проконтролировать, чтобы в условиях работы оборудования не превышались величины номинального давления, указанные для каждой конструктивной серии. Тем не менее, общий подбор размеров цилиндров позволяет иметь достаточно широкие границы безопасности. Аналогично не следует превышать величину максимального давления, которая соответствует значению давления при испытании, учитывая величины избыточного давления, созданные дроссельными клапанами в системах и/или вертикальными нагрузками со штоками, обращенными вниз, и торможениями ограничителя хода (см. параграф 1.7). Рекомендуется принять величины хода цилиндра, превышающие на несколько миллиметров значение рабочего хода, во избежание использования внутренних фальцев в качестве механических ограничителей хода. Следует проконтролировать также, чтобы предусмотренная рабочая температура и скорость были совместимы с выбранными уплотнительными прокладками.

1.1 ГИДРАВЛИЧЕСКИЕ ЦИЛИНДРЫ СЕРИИ СН

Гидравлические цилиндры серии CH с размерами, заданными согласно нормативам ISO 6020/2 - DIN 24554, представляют будущее использование гидравлических исполнительных механизмов:

- изготовленные с применением технологий ЧПУ и высококачественных материалов, они предлагают высокий уровень надежности и длительный срок эксплуатации;
- использование при сборке стандартных комплектующих способствует упрощению процедуры замены тех деталей, которые подвержены износу;
- они могут быть обеспечены постепенным торможением регулируемых передних и задних ограничителей хода, достигаемым за счет самоцентрирующихся шипов, предназначенных для постепенного замедления движущихся масс, даже если они достаточно значительны. Используются стандартизованные динамические уплотнительные прокладки, высоконадежные и легко приобретаемые в торговле, которые можно варьировать в соответствии с видом требуемого применения.

1.2 ОБЛАСТЬ ПРИМЕНЕНИЯ ЦИЛИНДРОВ СЕРИИ СН

- максимальное давление 25 Мпа (250 бар);
- давление до 21 Мпа (210 бар).

1.3 ГИЛЬЗА ЦИЛИНДРА

В изготовлении гильзы цилиндра используется трубка из высококачественной холоднотянутой или горячекатаной стали значительной толщины, с внутренней микроотделкой (шероховатость $RA \le 0,4$ микрон, допуск диаметров H9).

1.4 ШТОК

Штоки изготавливаются из высококачественной стали, с минимальным пределом текучести 700 H/мм² и прочным хромовым покрытием. Такая поверхностная обработка обеспечивает великолепную защиту от повреждений, со значительным сроком службы для уплотнительных прокладок. Поверхностная отделка составляет минимум 0,2 микрон. На заказ могут быть изготовлены штоки с усиленным хромовым покрытием, закаленным методом индукции либо с использованием специальных марок стали.

1.5 ГОЛОВКИ

Головки изготавливаются из стали таким образом, чтобы обеспечить превосходную концентричность между гильзой цилиндра, втулкой штока и самим штоком. Широкие внутренние проходные отверстия выполнены таким образом, чтобы ограничить до минимума потери нагрузки при прохождении жидкости.

1.6 ПОЛОЖЕНИЕ СОЕДИНЕНИЙ, ОТДУШИН И РЕГУЛИРОВОК АМОРТИЗАЦИИ

Во всех версиях исполнения, за исключением версии PI, соединения расположены на стороне 1, регулировки амортизации – на стороне 3, отдушины – на стороне 2. В версии PI соединения расположены на стороне 1, регулировки амортизации – на стороне 4, отдушины – на стороне 2. В случаях особых требований в отношении расположения указанных позиций, следует обратиться в наш технический отдел.

1.7 ПОРШЕНЬ

Поршни изготавливаются из специального материала таким образом, чтобы обеспечить концентрическую направляющую между: втулкой амортизации штока, гильзой цилиндра и втулками амортизации головок. Кроме того, значительная часть его радиальной поверхности контактирует с гильзой цилиндра. Это придает значительную стабильность системе, в связи с чем возможные прогибы штока, вызванные внешними радиальными нагрузками, сводятся к минимуму.

1.8 ТОРМОЖЕНИЕ ОГРАНИЧИТЕЛЯ ХОДА

Торможение ограничителя хода обычно используется на всех цилиндрах, которые функционируют со скоростями, превышающими 0,1 м/сек., либо в случае приведения в действие нагрузок в вертикальном направлении.

Торможение является также элементом безопасности на случай выхода из строя систем управления, например, сервосистем.

Следующее уравнение позволяет быстро рассчитать, в зависимости от расточки цилиндра (сечение торможения), давления подачи, длины торможения и рабочей скорости, массу амортизации (гашения) каждого цилиндра.

Это соотношение ограничивает величину избыточного давления на уровне 250 бар, предохраняя таким образом детали цилиндра, испытывающие нагрузку во время торможения.

$$M = \frac{(p_2 \cdot S - p_1 \cdot A) \cdot 2 \cdot L_f}{V_0^2} \cdot 10^{-1}$$
 [KIT]

 p_1 = давление подачи (бар)

 p_2 = максимальное давление 250 (бар)

S = сечение торможения S_1 или S_2 (см²)

 ho_1 — давление подачи (оар) ho_0 = рабочая скорость (м/сек.) ho_f = длина торможения ho_{f1} или ho_{f2} (мм)

A = площадь поршня (cm²)

Значения массы амортизации (гашения), полученные с помощью этого уравнения, являются сугубо теоретическими; фирма Grices не несет ответственности за практическое использование данных, полученных с помощью этого уравнения.

Данные, используемые в этом уравнении для расчета массы амортизации (гашения), могут браться из следующей таблицы.

Расточка (мм)	25	32	40	50	63	80	100	125	160	200
$\mathbf{S_1} (\mathrm{cm}^2)$ выходящий шток	1,77	3,52	5,50	7,68	13,07	21,98	35,51	51,81	98,94	144,37
$\mathbf{S_2}(\mathrm{cm}^2)$ входящий шток	4,52	6,91	11,43	18,5	29,39	46,45	74,70	118,86	190,79	303,83
$egin{aligned} \mathbf{L_{fl}} & (\text{мм}) & \text{выходящий} \ \text{шток} \end{aligned}$	19	19	28	29	29	29	31	31	35	38
$\mathbf{L}_{\mathbf{f2}}$ (mm) входящий шток	19	19	28	29	29	29	29	29	40	40
$\mathbf{A} (\mathrm{cm}^2)$	4,9	8	12,6	19,6	31,2	50,3	78,5	122,7	201,1	314,2

1.9 РЕГУЛИРОВКА АМОРТИЗАЦИИ

Для точной регулировки амортизации на обоих концах цилиндра устанавливаются игольчатые клапаны, как указано на схеме, приведенной ниже. Эти устройства оборудованы системой, которая препятствует их случайному демонтажу. Также они имеют уплотнительную гайку типа SEAL-LOCK, которую нужно аккуратно затянуть после регулировки с тем, чтобы обеспечить хорошее уплотнение. В следующей таблице указываются размеры и типология устройств, в зависимости от расточки цилиндра.

Расточка	Н	СН	ch		
	(MM)	(MM)	(MM)		
25-32	Фиксированное торможение				
От 40 до 200	18	17	5		

1.10 РАСПОРКИ

На цилиндры, у которых ход превышает 1000 мм, рекомендуется устанавливать специально спроектированные распорки, чтобы увеличить направляющую штока и поршень для ограничения явлений перегрузки и соответствующего преждевременного износа.

В приведенной ниже таблице указываются значения длины распорок в зависимости от величины хода цилиндра; в случае величин хода, не отображенных в этой таблице, следует обратиться за консультацией к нашим техническим специалистам.

В цилиндрах с величинами хода менее 1000 мм обычно не устанавливаются распорки, также как и в цилиндрах, подверженных лишь тяговому действию.

ХОД (мм)	1001 - 1500	1501 - 2000	2001 - 2500	2501 - 3000
Артикул распорки	1	2	3	4
Длина (мм)	50	100	150	200

1.11 УПЛОТНИТЕЛЬНЫЕ ПРОКЛАДКИ

В зависимости от конкретных условий функционирования цилиндров, таких как скорость, используемая жидкость, температура, необходимо выбрать тип уплотнительных прокладок в соответствии с указаниями фирмы-производителя. В наших цилиндрах укладываются уплотнительные прокладки с гнездами, соответствующими нормативам, предусмотренным ISO 7425. Они дают возможность цилиндрам работать в самых сложных условиях, а именно: при очень низких или высоких скоростях, при высокой интенсивности работы, с минеральными или синтетическими жидкостями. Ниже приводятся типологии уплотнительных прокладок, которые могут быть задействованы в соответствующих условиях использования.

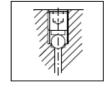
ТИП А (СТАНДАРТНЫЙ): используются обычно при отсутствии специфических указаний, обладают высокой уплотняющей способностью в условиях низкого давления, используются при скорости до 0.5 м/сек., при температурах в пределах -20 и +80 °C, для функционирования с минеральным маслом, воздухом, азотом.

ТИП В (НИЗКИЙ УРОВЕНЬ ТРЕНИЯ): прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 и 80 °C, для функционирования с минеральным маслом, воздухом, азотом.

ТИП С: (НИЗКИЙ УРОВЕНЬ ТРЕНИЯ ВИТОН) прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 и 135 °C, для функционирования с огнестойкими жидкостями на основе сложных фосфорных этилов.

ТИП Е: (бутадиен-нитрильный каучук + тефлон) прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 е 60 °C, для функционирования с гликоль водой.

1.12 ОТВЕРСТИЯ ДЛЯ МАСЛА


В целях как можно большего ограничения турбулентности и гидравлических ударов в трубах, соединенных с цилиндром, рекомендуется избегать ситуаций, когда скорость масла превышает 6 м/сек. Максимальные значения расхода, получаемые при таких критериях, содержатся в приведенной ниже таблице.

Ø отверстия для масла	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"
Максимальный расход (л/мин.)	14	28	48	63	102	162

1.13 ОТДУШИНЫ

Выполняются на заказ на обоих концах цилиндра. Отдушины устраиваются внутри головной и конечной части с тем, чтобы защитить их от случайных смещений, как показано на рисунке сбоку.

Для выполнения продувки следует отвинтить установочный винт, удалить воздух и вновь закрыть аккуратно отдушины, проверив при этом плотность их закрытия.

1.14 ДРЕНАЖ

Дренаж на уплотнительной прокладке штока обеспечивает большую плотность (герметичность) при высокой скорости, в особенности в цилиндрах с величинами хода более 2000 мм, либо в случаях использования, когда камера со стороны штока постоянно находится под давлением.

Дренажное отверстие величиной 1/8" обычно располагается на той же оси, что и отверстие подачи, и должно быть соединено непосредственно с резервуаром. При необходимости получения более подробных разъяснений по этому поводу, следует обращаться за помощью в наш технический отдел.

1.15 БЕСКОНТАКТНЫЕ ДАТЧИКИ

В гидравлических системах, когда есть необходимость определения положения поршня, можно использовать бесконтактные датчики, устанавливаемые непосредственно в головках цилиндров. Температура применения находится в диапазоне от -25 до +80 °C. Допустимое динамическое давление составляет 350 бар. Датчик снабжен встроенным усилителем с непосредственным питанием 10-30 В постоянного тока, с логическим выходом PNP для максимума 200 мА, поставляется в комплекте с соединителем и кабелем длиной около 4 метров. Они могут устанавливаться в головной и конечной частях, предусмотрены для расточек от 40 до 200 мм и располагаются на стороне 2 цилиндра. Они позволяют получать электрический сигнал при приближении поршня к ограничителю хода.

Расточка (мм)	DB _{макс.} (мм)	DC _{макс.} (мм)
40	77	67
50	75	71
63	72	65
80	74	71
100	73	65
125	71	51
160	71	34
200	67	20

ЦИЛИНДРЫ СЕРИИ СН

Hopмы ISO 6020/2 – 1991 – DIN 24554 серии 160 бар компактные

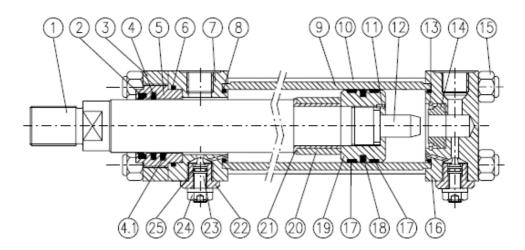
Рабочее давление: до 21 МПа Максимальное давление: 25 МПа Рабочая температура: от -20 до 80 °C

Допуски по ходу: от 0 до 1.2 мм для хода до 1000 мм, от 0 до 2.5 мм для большего хода

10 расточек от 25 до 200 мм до трех штоков для расточки

НА ЗАКАЗ:

Регулируемое торможение ограничителя хода на обоих концах цилиндра


Дренаж на штоке

Двойная уплотнительная прокладка штока

Специальные уплотнительные прокладки, подходящие для широкой гаммы жидкостей и температур

Бесконтактные индуктивные датчики для контроля ограничителя хода

Отдушины на обоих концах цилиндра

Поз.	Наименование	Материал	Поз.	Наименование	Материал
1	Шток	Хромированная сталь	13	Заднее стопорное кольцо	Сталь
2	Пылесъемное кольцо	Полиуретан	14	Втулка заднего тормоза	Бронза
3	Фланец	Сталь	15	Самотормозящаяся гайка	Сталь
4	Уплотнительная прокладка штока	Полиуретан / ПЭТФ	16	Задняя головка	Сталь
4,1	$2^{\frac{as}{2}}$ уплотнительная прокладка штока (опция L)	Нитрильный каучук и ПЭТФ	17	Башмак с антифрикционным покрытием	ПЭТФ
5	Втулка направляющей	Чугун	18	Уплотнительная прокладка поршня	Полиуретан / ПЭТФ
6	Кольцевая прокладка + РВК	Нитрильный каучук и полиуретан	19	Поршень	Сталь
7	Головка	Сталь	20	Втулка переднего тормоза	Сталь
8	Кольцевая прокладка + РВК	Нитрильный каучук и полиуретан	21	Распорка	Сталь
9	Гильза	Сталь	22	Предохранительная пробка	Сталь
10	Стяжка	Сталь	23	Регулировочная шпилька	Сталь
11	Предохранительная шпилька	Сталь	24	Уплотнительная гайка	Сталь
12	Тормозной шип	Сталь	25	Кольцевая прокладка	Нитрильный каучук

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ВЫБОР КОНСТРУКТИВНОЙ СЕРИИ

Для определения необходимой конструктивной серии следует проконтролировать, чтобы в условиях работы оборудования не превышались величины номинального давления, указанные для каждой конструктивной серии. Тем не менее, общий подбор размеров цилиндров позволяет иметь достаточно широкие границы безопасности. Аналогично не следует превышать величину максимального давления, которая соответствует значению давления при испытании, учитывая величины избыточного давления, созданные дроссельными клапанами в системах и/или вертикальными нагрузками со штоками, обращенными вниз, и торможениями ограничителя хода (см. параграф 1.7). Рекомендуется принять величины хода цилиндра, превышающие на несколько миллиметров значение рабочего хода, во избежание использования внутренних фальцев в качестве механических ограничителей хода. Следует проконтролировать также, чтобы предусмотренная рабочая температура и скорость были совместимы с выбранными уплотнительными прокладками.

1.1 ГИДРАВЛИЧЕСКИЕ ЦИЛИНДРЫ СЕРИИ СН

Гидравлические цилиндры серии CH с размерами, заданными согласно нормативам ISO 6020/2 - DIN 24554, представляют будущее использование гидравлических исполнительных механизмов:

- изготовленные с применением технологий ЧПУ и высококачественных материалов, они предлагают высокий уровень надежности и длительный срок эксплуатации;
- использование при сборке стандартных комплектующих способствует упрощению процедуры замены тех деталей, которые подвержены износу;
- они могут быть обеспечены постепенным торможением регулируемых передних и задних ограничителей хода, достигаемым за счет самоцентрирующихся шипов, предназначенных для постепенного замедления движущихся масс, даже если они достаточно значительны. Используются стандартизованные динамические уплотнительные прокладки, высоконадежные и легко приобретаемые в торговле, которые можно варьировать в соответствии с видом требуемого применения.

1.2 ОБЛАСТЬ ПРИМЕНЕНИЯ ЦИЛИНДРОВ СЕРИИ СН

- максимальное давление 25 Мпа (250 бар);
- давление до 21 Мпа (210 бар).

1.3 ГИЛЬЗА ЦИЛИНДРА

В изготовлении гильзы цилиндра используется трубка из высококачественной холоднотянутой или горячекатаной стали значительной толщины, с внутренней микроотделкой (шероховатость $RA \le 0,4$ микрон, допуск диаметров H9).

1.4 ШТОК

Штоки изготавливаются из высококачественной стали, с минимальным пределом текучести 700 H/мм² и прочным хромовым покрытием. Такая поверхностная обработка обеспечивает великолепную защиту от повреждений, со значительным сроком службы для уплотнительных прокладок. Поверхностная отделка составляет минимум 0,2 микрон. На заказ могут быть изготовлены штоки с усиленным хромовым покрытием, закаленным методом индукции либо с использованием специальных марок стали.

1.5 ГОЛОВКИ

Головки изготавливаются из стали таким образом, чтобы обеспечить превосходную концентричность между гильзой цилиндра, втулкой штока и самим штоком. Широкие внутренние проходные отверстия выполнены таким образом, чтобы ограничить до минимума потери нагрузки при прохождении жидкости.

1.6 ПОЛОЖЕНИЕ СОЕДИНЕНИЙ, ОТДУШИН И РЕГУЛИРОВОК АМОРТИЗАЦИИ

Во всех версиях исполнения, за исключением версии PI, соединения расположены на стороне 1, регулировки амортизации – на стороне 3, отдушины – на стороне 2. В версии PI соединения расположены на стороне 1, регулировки амортизации – на стороне 4, отдушины – на стороне 2. В случаях особых требований в отношении расположения указанных позиций, следует обратиться в наш технический отдел.

1.7 ПОРШЕНЬ

Поршни изготавливаются из специального материала таким образом, чтобы обеспечить концентрическую направляющую между: втулкой амортизации штока, гильзой цилиндра и втулками амортизации головок. Кроме того, значительная часть его радиальной поверхности контактирует с гильзой цилиндра. Это придает значительную стабильность системе, в связи с чем возможные прогибы штока, вызванные внешними радиальными нагрузками, сводятся к минимуму.

1.8 ТОРМОЖЕНИЕ ОГРАНИЧИТЕЛЯ ХОДА

Торможение ограничителя хода обычно используется на всех цилиндрах, которые функционируют со скоростями, превышающими 0,1 м/сек., либо в случае приведения в действие нагрузок в вертикальном направлении.

Торможение является также элементом безопасности на случай выхода из строя систем управления, например, сервосистем.

Следующее уравнение позволяет быстро рассчитать, в зависимости от расточки цилиндра (сечение торможения), давления подачи, длины торможения и рабочей скорости, массу амортизации (гашения) каждого цилиндра.

Это соотношение ограничивает величину избыточного давления на уровне 250 бар, предохраняя таким образом детали цилиндра, испытывающие нагрузку во время торможения.

$$M = \frac{(p_2 \cdot S - p_1 \cdot A) \cdot 2 \cdot L_f}{V_0^2} \cdot 10^{-1}$$
 [KIT]

 p_1 = давление подачи (бар)

 p_2 = максимальное давление 250 (бар)

S = сечение торможения S_1 или S_2 (см²)

 ho_1 — давление подачи (оар) ho_0 = рабочая скорость (м/сек.) ho_f = длина торможения ho_{f1} или ho_{f2} (мм)

A = площадь поршня (cm²)

Значения массы амортизации (гашения), полученные с помощью этого уравнения, являются сугубо теоретическими; фирма Grices не несет ответственности за практическое использование данных, полученных с помощью этого уравнения.

Данные, используемые в этом уравнении для расчета массы амортизации (гашения), могут браться из следующей таблицы.

Расточка (мм)	25	32	40	50	63	80	100	125	160	200
$\mathbf{S_1} (\mathrm{cm}^2)$ выходящий шток	1,77	3,52	5,50	7,68	13,07	21,98	35,51	51,81	98,94	144,37
$\mathbf{S_2}(\mathrm{cm}^2)$ входящий шток	4,52	6,91	11,43	18,5	29,39	46,45	74,70	118,86	190,79	303,83
$egin{aligned} \mathbf{L_{fl}} & (\text{мм}) & \text{выходящий} \ \text{шток} \end{aligned}$	19	19	28	29	29	29	31	31	35	38
$\mathbf{L}_{\mathbf{f2}}$ (mm) входящий шток	19	19	28	29	29	29	29	29	40	40
$\mathbf{A} (\mathrm{cm}^2)$	4,9	8	12,6	19,6	31,2	50,3	78,5	122,7	201,1	314,2

1.9 РЕГУЛИРОВКА АМОРТИЗАЦИИ

Для точной регулировки амортизации на обоих концах цилиндра устанавливаются игольчатые клапаны, как указано на схеме, приведенной ниже. Эти устройства оборудованы системой, которая препятствует их случайному демонтажу. Также они имеют уплотнительную гайку типа SEAL-LOCK, которую нужно аккуратно затянуть после регулировки с тем, чтобы обеспечить хорошее уплотнение. В следующей таблице указываются размеры и типология устройств, в зависимости от расточки цилиндра.

Расточка	Н	СН	ch		
	(MM)	(MM)	(MM)		
25-32	Фиксированное торможение				
От 40 до 200	18	17	5		

1.10 РАСПОРКИ

На цилиндры, у которых ход превышает 1000 мм, рекомендуется устанавливать специально спроектированные распорки, чтобы увеличить направляющую штока и поршень для ограничения явлений перегрузки и соответствующего преждевременного износа.

В приведенной ниже таблице указываются значения длины распорок в зависимости от величины хода цилиндра; в случае величин хода, не отображенных в этой таблице, следует обратиться за консультацией к нашим техническим специалистам.

В цилиндрах с величинами хода менее 1000 мм обычно не устанавливаются распорки, также как и в цилиндрах, подверженных лишь тяговому действию.

ХОД (мм)	1001 - 1500	1501 - 2000	2001 - 2500	2501 - 3000
Артикул распорки	1	2	3	4
Длина (мм)	50	100	150	200

1.11 УПЛОТНИТЕЛЬНЫЕ ПРОКЛАДКИ

В зависимости от конкретных условий функционирования цилиндров, таких как скорость, используемая жидкость, температура, необходимо выбрать тип уплотнительных прокладок в соответствии с указаниями фирмы-производителя. В наших цилиндрах укладываются уплотнительные прокладки с гнездами, соответствующими нормативам, предусмотренным ISO 7425. Они дают возможность цилиндрам работать в самых сложных условиях, а именно: при очень низких или высоких скоростях, при высокой интенсивности работы, с минеральными или синтетическими жидкостями. Ниже приводятся типологии уплотнительных прокладок, которые могут быть задействованы в соответствующих условиях использования.

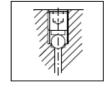
ТИП А (СТАНДАРТНЫЙ): используются обычно при отсутствии специфических указаний, обладают высокой уплотняющей способностью в условиях низкого давления, используются при скорости до 0.5 м/сек., при температурах в пределах -20 и +80 °C, для функционирования с минеральным маслом, воздухом, азотом.

ТИП В (НИЗКИЙ УРОВЕНЬ ТРЕНИЯ): прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 и 80 °C, для функционирования с минеральным маслом, воздухом, азотом.

ТИП С: (НИЗКИЙ УРОВЕНЬ ТРЕНИЯ ВИТОН) прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 и 135 °C, для функционирования с огнестойкими жидкостями на основе сложных фосфорных этилов.

ТИП Е: (бутадиен-нитрильный каучук + тефлон) прокладки антитрения, не рекомендуются к употреблению в случае, если необходимо удерживать нагрузку в положении, рекомендуются для скоростей до 4 м/сек., при температурах в пределах -20 е 60 °C, для функционирования с гликоль водой.

1.12 ОТВЕРСТИЯ ДЛЯ МАСЛА


В целях как можно большего ограничения турбулентности и гидравлических ударов в трубах, соединенных с цилиндром, рекомендуется избегать ситуаций, когда скорость масла превышает 6 м/сек. Максимальные значения расхода, получаемые при таких критериях, содержатся в приведенной ниже таблице.

Ø отверстия для масла	1/4"	3/8"	1/2"	3/4"	1"	1 1/4"
Максимальный расход (л/мин.)	14	28	48	63	102	162

1.13 ОТДУШИНЫ

Выполняются на заказ на обоих концах цилиндра. Отдушины устраиваются внутри головной и конечной части с тем, чтобы защитить их от случайных смещений, как показано на рисунке сбоку.

Для выполнения продувки следует отвинтить установочный винт, удалить воздух и вновь закрыть аккуратно отдушины, проверив при этом плотность их закрытия.

1.14 ДРЕНАЖ

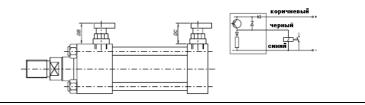
Дренаж на уплотнительной прокладке штока обеспечивает большую плотность (герметичность) при высокой скорости, в особенности в цилиндрах с величинами хода более 2000 мм, либо в случаях использования, когда камера со стороны штока постоянно находится под давлением.

Дренажное отверстие величиной 1/8" обычно располагается на той же оси, что и отверстие подачи, и должно быть соединено непосредственно с резервуаром. При необходимости получения более подробных разъяснений по этому поводу, следует обращаться за помощью в наш технический отдел.

1.15 БЕСКОНТАКТНЫЕ ДАТЧИКИ

В гидравлических системах, когда есть необходимость определения положения поршня, можно использовать бесконтактные датчики, устанавливаемые непосредственно в головках цилиндров. Температура применения находится в диапазоне от -25 до +80 °C. Допустимое динамическое давление составляет 350 бар. Датчик снабжен встроенным усилителем с непосредственным питанием 10-30 В постоянного тока, с логическим выходом PNP для максимума 200 мА, поставляется в комплекте с соединителем и кабелем длиной около 4 метров. Они могут устанавливаться в головной и конечной частях, предусмотрены для расточек от 40 до 200 мм и располагаются на стороне 2 цилиндра. Они позволяют получать электрический сигнал при приближении поршня к ограничителю хода.

Расточка (мм)	DB _{макс.} (мм)	DC _{макс.} (мм)
40	77	67
50	75	71
63	72	65
80	74	71
100	73	65
125	71	51
160	71	34
200	67	20


Технические характеристики датчика:

Рабочая температура: $-25 + 80^{\circ}$ C

Напряжение питания: 10 – 30 В пост. тока

Нагрузка: 200 мА Исполнение: PNP

Тип выхода: нормально разомкнут

ОГРАНИЧЕНИЯ:

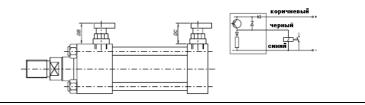
- для версий исполнения типа OA и FA установка датчика на головке происходит на стороне 3, противоположной питанию, и не допускает монтажа регулировок амортизации;
- для версии исполнения РІ (расточка 40-50-63) датчики должны быть демонтированы для крепления винтов ножек, а затем вновь установлены, для всех расточек при наличии отдушин они располагаются на той же стороне, что и регулировки амортизации;
- для версий исполнения типа OP и FP монтаж датчика на донной части происходит на стороне 3, противоположной питанию, и не допускает установки регулировок амортизации;
- для расточек 25 и 32 мм не предусматривается использование бесконтактных датчиков.

2.1 ПИКОВАЯ НАГРУЗКА

Когда цилиндр работает на сжатие, необходимо проверять пиковую нагрузку. На схеме 1 указаны самые общие виды связи. С каждым цилиндром связан коэффициент K. Максимальный ход цилиндра L, умноженный на коэффициент K, дает величину L_V , виртуальную длину, $(L_V=L^*K)$. Из графика 2 получается минимальный диаметр штока, в зависимости от нагрузки. Точка пересечения между величиной L_V в мм и силой толчка F в кH обязательно должна быть ниже характеристической кривой контролируемого штока. Пример:

Сила толчка цилиндра CD63/28/750/FA/00B (передний фланец) составляет 55 кН. Из таблицы **1** берем коэффициент **K**, определяемый видом связи **K=2**, виртуальная длина получается $\mathbf{L_V}$ = \mathbf{L} * \mathbf{K} $\mathbf{L_V}$ = $\mathbf{750}$ * $\mathbf{2}$ = $\mathbf{1500}$ мм. График **2** показывает, находится ли точка встречи между $\mathbf{L_V}$ и **F** ниже кривой, относящейся к штоку Ø 28. До тех пор, пока не проконтролировано наличие условия стабильности, следует принять дифференцированный шток Ø 45. Поэтому выбирается цилиндр CD63/45/750FA00B, для которого наличие условия стабильности уже проверено.

График 2


Технические характеристики датчика:

Рабочая температура: $-25 + 80^{\circ}$ C

Напряжение питания: 10 – 30 В пост. тока

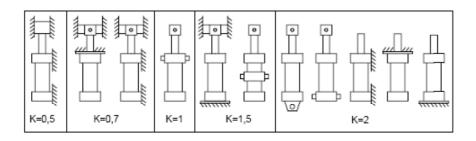
Нагрузка: 200 мА Исполнение: PNP

Тип выхода: нормально разомкнут

ОГРАНИЧЕНИЯ:

- для версий исполнения типа OA и FA установка датчика на головке происходит на стороне 3, противоположной питанию, и не допускает монтажа регулировок амортизации;
- для версии исполнения РІ (расточка 40-50-63) датчики должны быть демонтированы для крепления винтов ножек, а затем вновь установлены, для всех расточек при наличии отдушин они располагаются на той же стороне, что и регулировки амортизации;
- для версий исполнения типа OP и FP монтаж датчика на донной части происходит на стороне 3, противоположной питанию, и не допускает установки регулировок амортизации;
- для расточек 25 и 32 мм не предусматривается использование бесконтактных датчиков.

2.1 ПИКОВАЯ НАГРУЗКА


Когда цилиндр работает на сжатие, необходимо проверять пиковую нагрузку. На схеме 1 указаны самые общие виды связи. С каждым цилиндром связан коэффициент K. Максимальный ход цилиндра L, умноженный на коэффициент K, дает величину L_V , виртуальную длину, $(L_V=L^*K)$. Из графика 2 получается минимальный диаметр штока, в зависимости от нагрузки. Точка пересечения между величиной L_V в мм и силой толчка F в кH обязательно должна быть ниже характеристической кривой контролируемого штока. Пример:

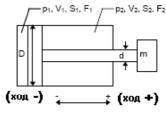

Сила толчка цилиндра CD63/28/750/FA/00B (передний фланец) составляет 55 кН. Из таблицы **1** берем коэффициент **K**, определяемый видом связи **K=2**, виртуальная длина получается $\mathbf{L_V}$ = \mathbf{L} * \mathbf{K} $\mathbf{L_V}$ = $\mathbf{750}$ * $\mathbf{2}$ = $\mathbf{1500}$ мм. График **2** показывает, находится ли точка встречи между $\mathbf{L_V}$ и **F** ниже кривой, относящейся к штоку Ø 28. До тех пор, пока не проконтролировано наличие условия стабильности, следует принять дифференцированный шток Ø 45. Поэтому выбирается цилиндр CD63/45/750FA00B, для которого наличие условия стабильности уже проверено.

График 2

Схема 1

2.2 ЕДИНИЦА ИЗМЕРЕНИЯ, ИСПОЛЬЗУЕМАЯ ДЛЯ РАСЧЕТА СИЛЫ И СКОРОСТИ

ОПИСАНИЕ	СИМВОЛ	ЕДИНИЦА ИЗМЕРЕНИЯ
Сечение	S	cm ²
Давление	р	бар
Ø поршня	D	MM
Ø штока	d	MM
Скорость	V	м/сек.
Расход	Q	л/мин.
Нагрузка	m	КГ

СИЛА ПРИ ТОЛЧКЕ (ХОД +)

 $F_1=(p_1 \cdot S_1)$

(кг)

СИЛА ПРИ ТЯГЕ (ХОД –)

(KL)

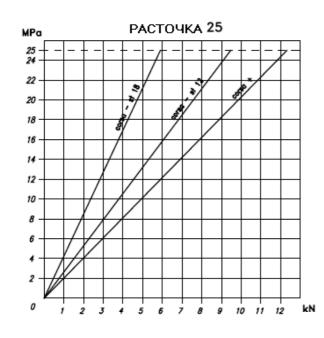
 $F_2=(p_2 \cdot S_2)$

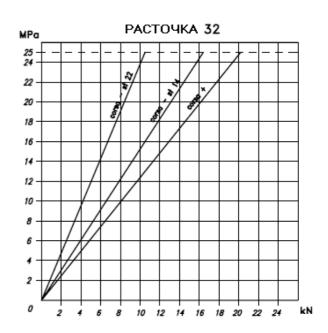
СКОРОСТЬ ПРИ ТОЛЧКЕ (ХОД +)

 $V_1 = Q/(6 \cdot S_1)$

(м/сек.)

СКОРОСТЬ ПРИ ТЯГЕ (ХОД -)

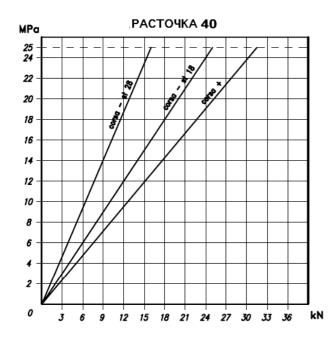

 $V_2=Q/(6 \cdot S_2)$

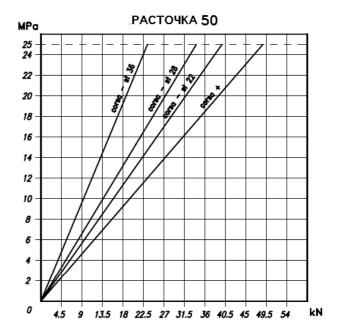

(м/сек.)

$$S_1 = \frac{\pi \cdot D^2}{4 \cdot 100} \text{ (cm}^2)$$

$$S_1 = \frac{\pi \bullet D^2}{4 \bullet 100} \text{ (cm}^2\text{)}$$
 $S_2 = \frac{\pi \bullet (D^2 - d^2)}{4 \bullet 100} \text{ (cm}^2\text{)}$

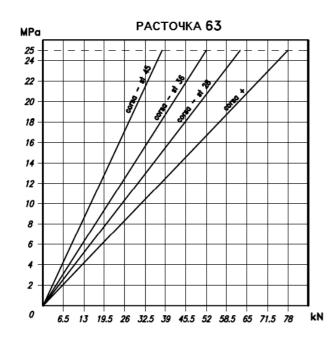
2.3 ДИАГРАММЫ СИЛ ДАВЛЕНИЯ

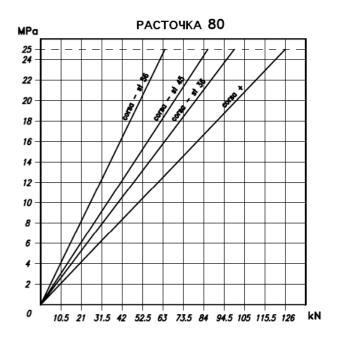



Пояснения к диаграммам:

МРа – Мпа

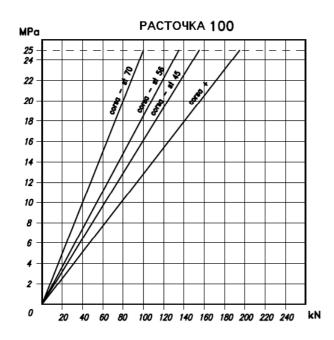
kN - κH

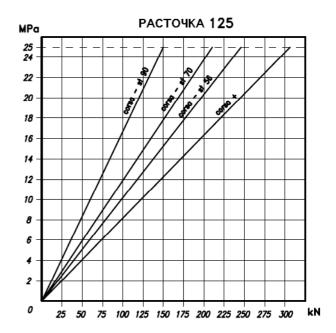

corsa = st. - xoд



Пояснения к диаграммам:

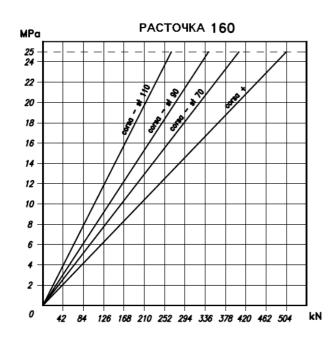
MPa - Mпa $kN - \kappa H$ corsa = st. - xoд

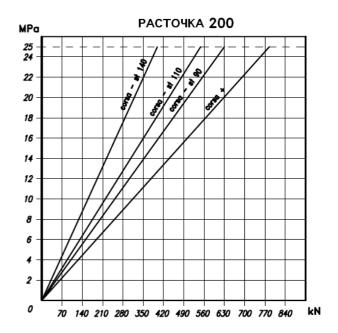




Пояснения к диаграммам:

MPa - Mпa $kN - \kappa H$ corsa = st. - xoд




Пояснения к диаграммам:

_ MPa – Мпа

 $kN - \kappa H$

corsa = st. - xoд

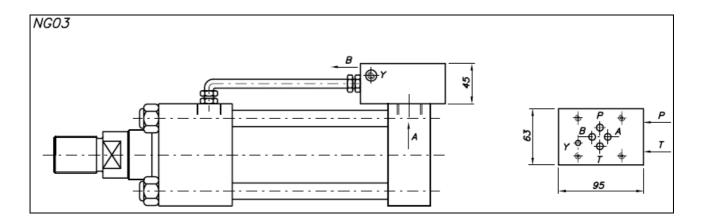
Пояснения к диаграммам:

МРа – Мпа

 $kN-\kappa H$

corsa = st. - xoд

3.1 ВСТРОЕННЫЕ ПЛИТЫ

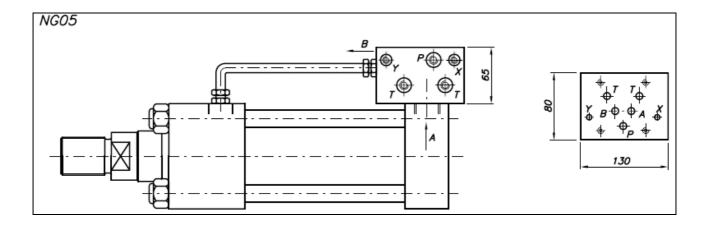

Цилиндры серии CH могут укомплектовываться плитой ISO/Cetop (03, 05) для монтажа клапанов непосредственно на цилиндре.

• Цилиндр СН с плитой ISO/Cetop 03

Эта плита может быть монтирована на цилиндрах с расточкой от 40 до 200 мм, имеющих минимальный ход 100 мм.

Соединения P и T - 3/8" BSP, соединение Y - 1/8" BSP.

Для получения более подробной информации обращайтесь в наш технический отдел.

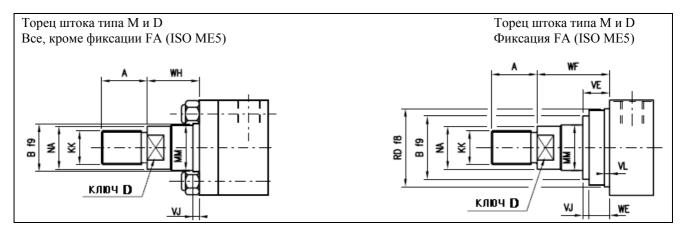


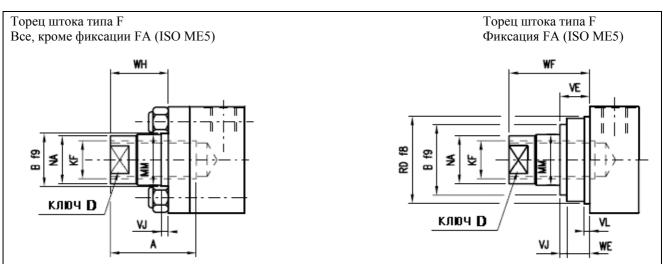
• Цилиндр СН с плитой ISO/Cetop 05

Эта плита может быть монтирована на цилиндрах с расточкой от 40 до 200 мм, имеющих минимальный ход 150 мм.

Соединения P и T - 3/4 P, соединения X и Y - 1/4" BSP.

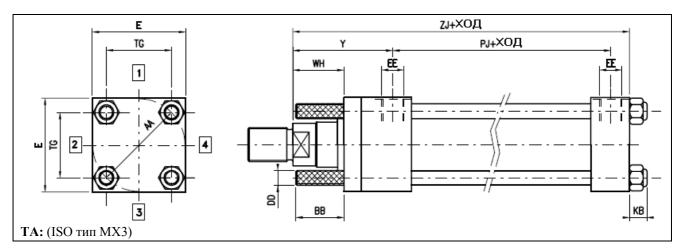
Для получения более подробной информации обращайтесь в наш технический отдел.

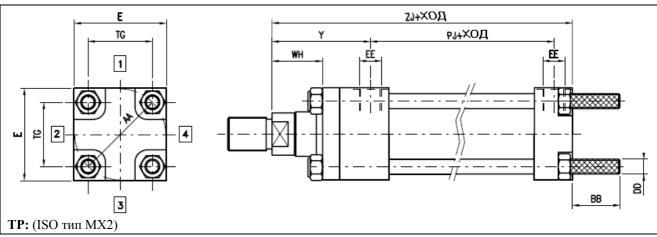


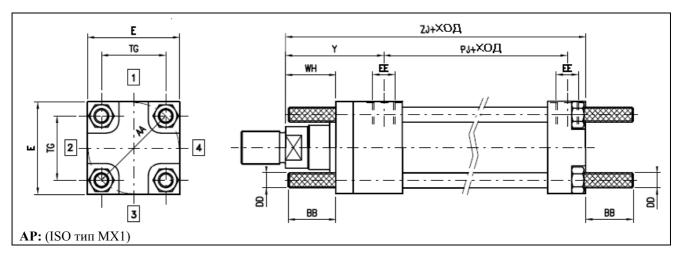

ПР	ИМЕР ДЛЯ ОПРЕДЕЛЕНИЯ КОДИРОВЬ	си при 3	PAKA3E
ХАРАКТЕРИСТИКА	ОПИСАНИЕ	СИМВ.	ПРИМЕР
СЕРИИ	Версия исполнения со стяжками	СН	CH/50/22//100/EB/10 A
РАСТОЧКА	указать в мм		│
ШТОК	указать в мм		
ШТОК № 2	указать в мм (только для штока порш	(кн	
ХОД	указать в мм	T	↓← ───
	передние + задние выступающие стяжки	AP	
	передний фланец	FA	
	задний фланец	FP	
	изжон	PI	
	шарнирное гнездо	CF	
	шарнирный штырь	CM	
ИСПОЛНЕНИЕ	шарнирное соединение	CS	
THE THE THIE	передняя цапфа	OA	
	промежуточная цапфа	OI	
	задняя цапфа	OP	
	передние выступающие стяжки	TA	
	задние выступающие стяжки	TP	
	передние резьбовые отверстия	ZA	
	задние резьбовые отверстия	ZP	
	без торможения	0	
ТОРМОЖЕНИЕ	переднее торможение	1	
	заднее торможение	2	
	переднее + заднее торможение	3	←
	без распорки	0	
	50 мм	1	
РАСПОРКА	100 мм	2	
	150 мм	3	
	200 мм	4	
	полиуретан (стандартные прокладки)	A	
	нитрильный каучук + ПЭТФ (прокладки	В	
УПЛОТНИТЕЛЬНЫЕ	антитрения)		
ПРОКЛАДКИ	витон + ПЭТФ (высокие температуры)	C	
	нитрильный каучук + карбографит	D	
	(прокладки антитрения вода / гликоль)		
	ОПЦИИ*	ъ	
ТОРЦЫ ШТОКА	тип D	D	
, -	тип F	F	
ОТПУННИЦ	передняя	G	
ОТДУШИНЫ	задняя	Н	
HDOĞI IOE	передняя + задняя	I	
ДВОЙНОЕ		L	
УПЛОТНЕНИЕ ШТОКА	2-20-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		
ДРЕНАЖ	сторона штока	W	
	тяжелое хромовое покрытие, толщина =	P	
OFDAFOTICA HITOKA	0.045 мм, 100h солевой туман ISO 3768	Tr	
ОБРАБОТКА ШТОКА	Закалка и хромирование	T	
	Ni-CROMAX30 хромирование -	N	
	никелирование, нормы ASTM В 117 1000h		
		X1	1
БЕСКОНТАКТНЫЕ	передний задний	X1 X2	1
ДАТЧИКИ		X2 X3	
датчики	передний + задний ISO/Cetop 03		1
ГИДРАВЛ. ОСНОВАНИЯ	ISO/Cetop 05	NG03	
	130/Cetop 03	NG05	

^{*} Следует привести в алфавитном порядке

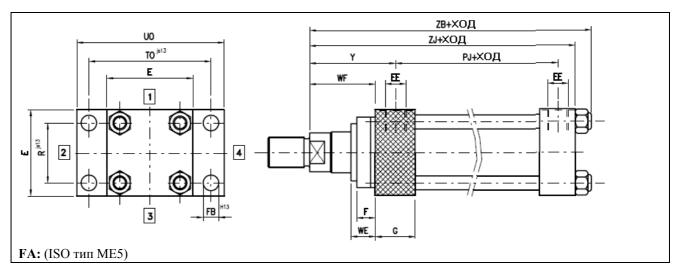
ТОРЦЕВЫЕ РАЗМЕРЫ ШТОКА

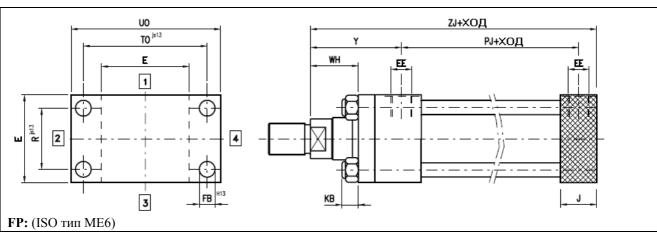


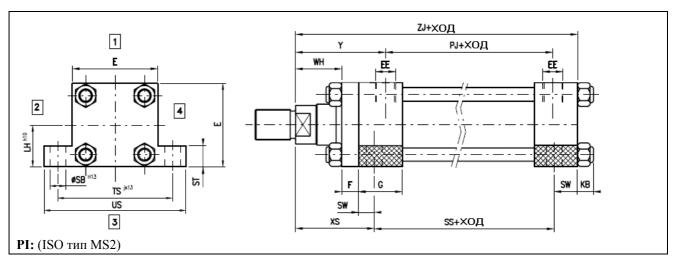



AL	N°	MM	Тип М ISO 6020/2 (Тип [] DIN 2455		Тип Г	=	В	D	NA	WF	WH	VE	٧J	 Тольк	о фи	ксаці	1я FA
		штока	KK	Α	KK	Α	KF	Α								VL min	RD	VJ	WE
25	1	12	M10x1,25	14	M10x1,25	14	M8x1	14	24	10	11	25	15	16	6	3	38	6	10
25	2	18	M14x1,5	18	M10x1,25	14	M12x1,25	18	30	15	17	25	15	16	6	3	30	0	10
32	1	14	M12x1,25	16	M12x1,25	16	M10x1,25	16	26	12	13	35	25	22	12	3	42	12	10
32	2	22	M16x1,5	22	M12x1,25	16	M16x1,5	22	34	18	21	35	25	22	12	0	72	12	10
40	1	18	M14x1,5	18	M14x1,5	18	M12x1,25	18	30	15	17	35	25	22	6	3	62	12	10
40	2	28	M20x1,5	28	M14x1,5	18	M20x1,5	28	42	22	26	35	25	22	12	3	02	12	10
	1	22	M16x1,5	22	-	-	M16x1,5	22	34	18	21	41	25	25	9				
50	2	36	M27x2	36	M16x1,5	22	M27x2	36	50	30	34	41	25	25	9	4	74	9	16
	3*	28*	M20x1,5	28	M16x1,5	22	M20x1,5	28	42	22	26	41	25	25	9				
	1	28	M20x1,5	28	-	-	M20x1,5	28	42	22	26	48	32	28	12		75	12	
63	2	45	M33x2	45	M20x1,5	28	M33x2	45	60	39	43	48	32	29	13	4	88	13	16
	3*	36*	M27x2	36	M20x1,5	28	M27x2	36	50	30	34	48	32	29	13		00	10	
	1	36	M27x2	36	-	-	M27x2	36	50	30	34	51	31	29	9		82		
80	2	56	M42x2	56	M27x2	36	M42x2	56	72	48	54	51	31	29	9	4	105	9	20
	3*	45*	M33x2	45	M27x2	36	M33x2	45	60	39	43	51	31	29	9		100		
	1	45	M33x2	45	-	-	M33x2	45	60	39	43	57	35	32	10		92		
100	2	70	M48x2	63	M33x2	45	M48x2	63	88	62	68	57	35	32	10	5	125	10	22
	3*	56*	M42x2	56	M33x2	45	M42x2	56	72	48	54	57	35	32	10		120		
	1	56	M42x2	56	-	-	M42x2	56	72	48	54	57	35	32	10		105		
125	2	90	M64x3	85	M42x2	56	M64x3	85	108	80	88	57	35	32	10	5	150	10	22
	3*	70*	M48x2	63	M42x2	56	M48x2	63	88	62	68	57	35	32	10		150		
	1	70	M48x2	63	-	-	M48x2	63	88	62	68	57	32	32	7		125		
160	2	110	M80x3	95	M48x2	63	M80x3	95	133	100	108	57	32	32	7	5	170	7	25
	3*	90*	M64x3	85	M48x2	63	M64x3	85	108	80	88	57	32	32	7		170		
	1	90	M64x3	85	-	-	M64x3	85	108	80	88	57	32	32	7		150		
200	2	140	M100x3	112	M64x3	85	M100x3	112	163	128	138	57	32	32	7	5	210	7	25
	3*	110*	M80x3	95	M64x3	85	M80x3	95	133	100	108	57	32	32	7		210		

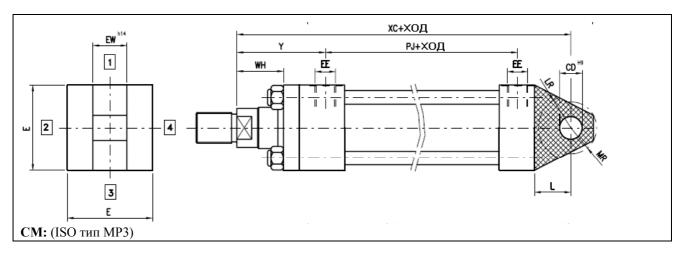
^{*} Диаметры, не предусмотренные ISO-DIN

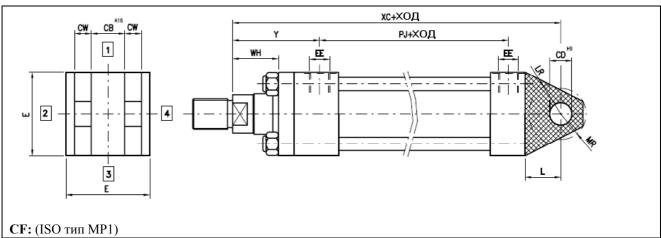


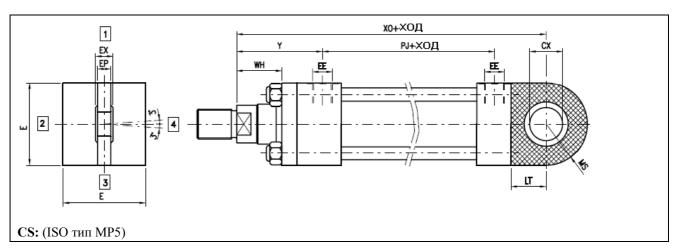



AL	AA	BB	DD	E	EE	KB	TG	WH	ZJ	Υ	PJ
25	40	19	M5x0,8	40*	1/4"	6,8	28,3	15	114	50	53
32	47	24	M6x1	45*	1/4"	7,8	33,2	25	128	60	56
40	59	35	M8x1	60	3/8"	10,6	41,7	25	153	62	73
50	74	46	M12x1,25	75	1/2"	14,8	52,3	25	159	67	74
63	91	46	M12x1,25	90	1/2"	14,8	64,3	32	168	71	80
80	117	59	M16x1.5	115	3/4"	18	82,7	31	190	77	93
100	137	59	M16X1,5	126	3/4"	18	96,9	35	203	82	101
125	178	81	M22x1,5	165	1"	25	125,9	35	232	86	117
160	219	92	M27x2	196	1"	30,8	154,9	32	245	86	121
200	269	115	M30x2	240	1 1/4"	33,2	190,2	32	299	98	158,5

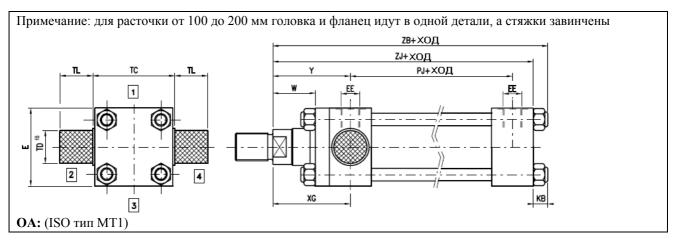
^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

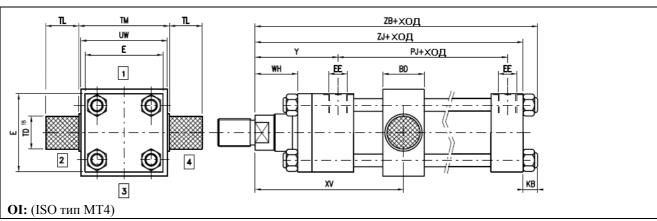


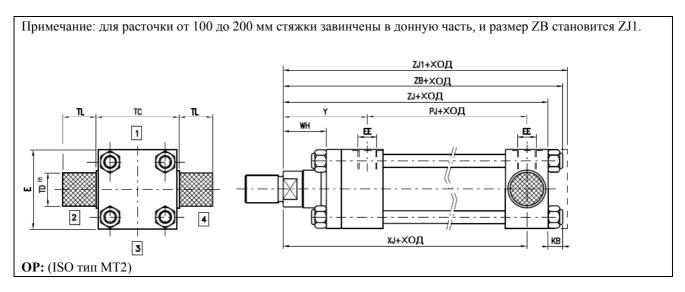



AL	Ε	EE	F	FB	G	J	KB	LH	R	SB	SS	ST	SW	TO	TS	UO	US	WE	WF	WH	XS	ZΒ	ZJ	Υ	PJ
25	40*	1/4"	10	5,5	25	25	6,8	19	27	6,6	73	8,5	8	51	54	65	72	16	25	15	33	121	114	50	53
32	45*	1/4"	10	6,6	25	25	7,8	22	33	9	73	12,5	10	58	63	70	84	22	35	25	45	136	128	60	56
40	60	3/8"	10	11	38	38	10,6	31	41	11	98	12,5	10	87	83	110	103	22	35	25	45	164	153	62	73
50	75	1/2"	16	14	38	38	14,8	37	52	14	92	19	13	105	102	130	127	25	41	25	54	174	159	67	74
63	90	1/2"	16	14	38	38	14,8	44	65	18	86	26	17	117	124	145	161	29	48	32	65	183	168	71	80
80	115	3/4"	20	18	45	45	18	57	83	18	105	26	17	149	149	180	186	29	51	31	68	208	190	77	93
100	126	3/4"	22	18	45	45	18	63	97	26	102	32	22	162	172	200	216	32	57	35	79	221	203	82	101
125	165	1"	22	22	58	58	25	82	126	26	131	32	22	208	210	250	254	32	57	35	79	257	232	86	117
160	196	1"	25	26	58	58	30,8	101	155	33	130	38	29	253	260	300	318	32	57	32	86	276	245	86	121
200	240	1 1/4"	25	33	76	76	33,2	122	190	39	172	44	35	300	311	360	381	32	57	32	92	332	299	98	158,5

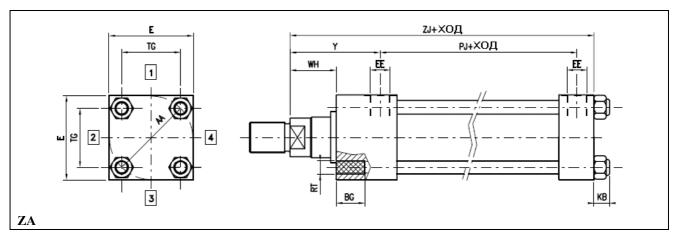
^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

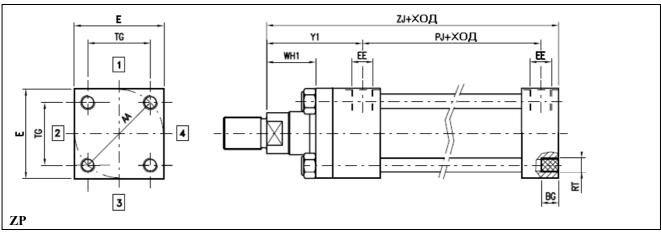





AL	CB	CD	CW	CX	Е	EE	EP	EW	EX	L	LR	LT	MR	MS	WH	XC	XO	Υ	PJ
25	12	10	6	12	40*	1/4"	8	12	10	13	12	16	12	20	15	127	130	50	53
32	16	12	8	16	45*	1/4"	11	16	14	19	17	20	17	22,5	25	147	148	60	56
40	20	14	14	20	60	3/8"	13	20	16	19	17	25	17	29	25	172	178	62	73
50	30	20	15	25	75	1/2"	17	30	20	32	29	31	29	33	25	191	190	67	74
63	30	20	15	30	90	1/2"	19	30	22	32	29	38	29	40	32	200	206	71	80
80	40	28	20	40	115	3/4"	23	40	28	39	34	48	34	50	31	229	238	77	93
100	50	36	25	50	126	3/4"	30	50	35	54	50	58	50	62	35	257	261	82	101
125	60	45	30	60	165	1"	38	60	44	57	53	72	53	80	35	289	304	86	117
160	70	56	35	80	196	1"	47	70	55	78	59	107	59	98	32	308	337	86	121
200	80	70	40	100	240	1 1/4"	57	80	70	97	78	131	78	120	32	381	415	98	158,5

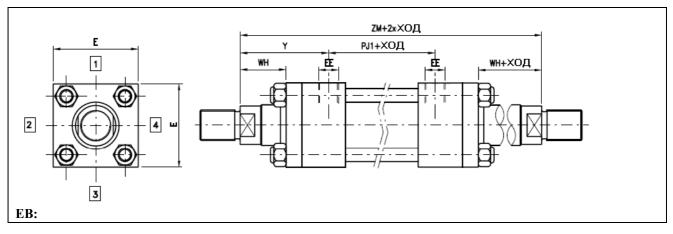
^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

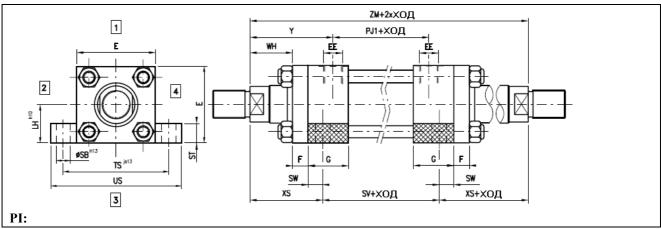


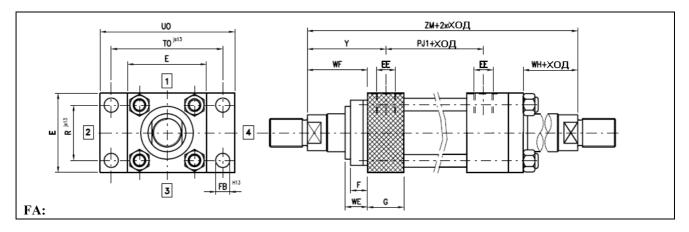

AL	BD	Ε	EE	KB	TC	TD	TL	TM	UW	WH	XG	XJ	XV_{min}	XV_{max}	ZJ	ZJ1	ZB	Υ	PJ
25	20	40*	1/4"	6,8	38	12	10	48	46	15	44	101	82	72 + ход	114	-	121	50	53
32	25	45*	1/4"	7,8	44	16	12	55	53	25	54	115	96	82· + ход	128	-	136	60	56
40	30	60	3/8"	10,6	63	20	16	76	74	25	57	134	107	88 + ход	153	-	164	62	73
50	40	75	1/2"	14,8	76	25	20	89	87	25	64	140	117	90· + ход	159	-	174	67	74
63	40	90	1/2"	14,8	89	32	25	100	98	32	70	149	132	91 + ход	168	-	183	71	80
80	48	115	3/4"	18	114	40	32	127	125	31	76	168	147	99· + ход	190	-	200	77	93
100	58	126	3/4"	18	127	50	40	140	138	35	71	187	158	107 + ход	203	216	-	82	101
125	68	165	1"	25	165	63	50	178	175	35	75	209	180	109 + ход	232	244	-	86	117
160	88	196	1"	30,8	203	80	63	215	212	32	75	230	198	104 + ход	245	273	-	86	121
200	108	240	1 1/4"	33,2	241	100	80	279	276	32	85	276	226	130 + ход	299	331	-	98	158,5

^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

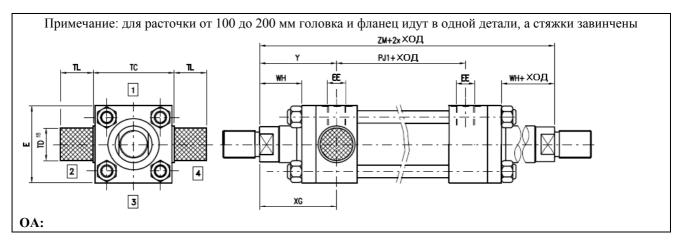
^{**} corsa = ход

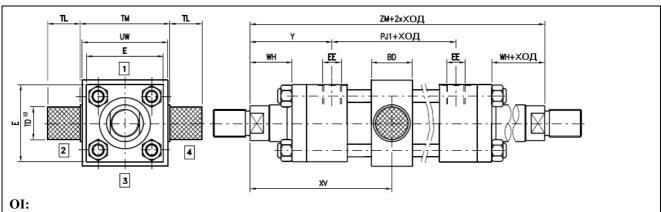





AL	AA	BG min	E	EE	KB	RT	TG	WH	WH1	ZJ	Υ	Y1	PJ
25	40	8	40*	1/4"	6,8	M5x0,8	28,3	15	15	114	50	50	53
32	47	9	45*	1/4"	7,8	M6x1	33,2	25	25	128	60	60	56
40	59	12	60	3/8"	10,6	M8x1,25	41,7	25	25	153	62	62	73
50	74	18	75	1/2"	14,8	M12x1,75	52,3	25	25	159	67	67	74
63	91	18	90	1/2"	14,8	M12x1,75	64,3	32	32	168	71	71	80
80	117	24	115	3/4"	18	M16x2	82,7	31	31	190	77	77	93
100	137	24	126	3/4"	18	M16X2	96,9	35	35	203	82	82	101
125	178	27	165	1"	25	M22x2,5	125,9	35	35	232	86	86	117
160	219	32	196	1"	30,8	M27x3	154,9	32	25	245	86	79	121
200	269	40	240	1 1/4"	33,2	M30x3,5	190,2	32	28	299	98	94	158,5

^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение





AL	Е	EE	F	FB	G	LH	R	SB	ST	SV	SW	TO	TS	UO	US	WE	WF	WH	XS	ZM	Υ	PJ1
25	40*	1/4"	10	5,5	40	19	27	6,6	8,5	88	8	51	54	65	72	16	25	15	33	154	50	54
32	45*	1/4"	10	6,6	40	22	33	9	12,5	88	10	58	63	70	84	22	35	25	45	178	60	58
40	60	3/8"	10	11	45	31	41	11	12,5	105	10	87	83	110	103	22	35	25	45	195	62	71
50	75	1/2"	16	14	45	37	52	14	19	99	13	105	102	130	127	25	41	25	54	207	67	73
63	90	1/2"	16	14	45	44	65	18	26	93	17	117	124	145	161	29	48	32	65	223	71	81
80	115	3/4"	20	18	50	57	83	18	26	110	17	149	149	180	186	29	51	31	68	246	77	92
100	126	3/4"	22	18	50	63	97	26	32	107	22	162	172	200	216	32	57	35	79	265	82	101
125	165	1"	22	22	58	82	126	26	32	131	22	208	210	250	254	32	57	35	79	289	86	117
160	196	1"	25	26	58	101	155	33	38	121	29	253	260	300	318	32	57	32	86	293	86	121
200	240	1 1/4"	25	33	76	122	190	39	44	169	35	300	311	360	381	32	57	32	92	353	98	157

^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

AL	BD	Е	EE	TC	TD	TL	TM	UW	WH	XG	XV_{min}	XV_{max}	ZM	Υ	PJ1
25	20	40*	1/4"	38	12	10	48	46	15	44	82	72· + ход	154	50	54
32	25	45*	1/4"	44	16	12	55	53	25	54	96	82 + ход	178	60	58
40	30	60	3/8"	63	20	16	76	74	25	57	107	88 + ход	195	62	71
50	40	75	1/2"	76	25	20	89	87	25	64	117	90 + ход	207	67	73
63	40	90	1/2"	89	32	25	100	98	32	70	132	91· + ход	223	71	81
80	48	115	3/4"	114	40	32	127	125	31	76	147	99 + ход	246	77	92
100	58	126	3/4"	127	50	40	140	138	35	71	158	107 і ход	265	82	101
125	68	165	1"	165	63	50	178	175	35	75	180	109 + ход	289	86	117
160	88	196	1"	203	80	63	215	212	32	75	198	104 + ход	293	86	121
200	108	240	1 1/4"	241	100	80	279	276	32	85	226	125· + ход	353	98	157

^{*} На цилиндрах с расточкой 25 и 32 головка увеличивается на 5 мм, чтобы вместить соединение

